ISI BANGALORE

JULY 2017

100 Points

B Math Algebra II

Notes.

- (a) Justify all your steps.
- (b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers, $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.
- (c) By default, F denotes a field.
- 1. [22 points] Let A denote the matrix

$$A = \begin{pmatrix} 4 & -5 & 2\\ 2 & -3 & 0\\ -1 & 1 & -1 \end{pmatrix}$$

- (i) Find the characteristic polynomial, the eigenvalues and the eigenvectors of A.
- (ii) Find an invertible 3×3 matrix X such that XAX^{-1} is a diagonal matrix and verify by expicitly multiplying out that XAX^{-1} is indeed diagonal.
- (iii) Using (ii) or otherwise calculate A^{1000} .
- (iv) Find the minimal polynomial of A.

2. [12 points] Let v_1, \ldots, v_r and w_1, \ldots, w_r be orthonormal subsets of \mathbb{R}^n . Prove that there exists an orthogonal matrix A such that $Av_i = w_i$ for $i = 1, 2, \ldots, r$.

3. [12 points] Let $T: V \to V$ be a linear operator on a finite dimensional vector space. If T satisfies $T \circ T = T$, then prove that $V = \ker(T) \oplus \operatorname{im}(T)$.

4. [20 points] Let F be a field and let $N = (n_{ij})$ be an $m \times m$ matrix over F which is strictly upper triangular, i.e., $n_{ij} = 0$ for $i \ge j$. Prove that $N^m = 0$. Conversely if A is an $m \times m$ matrix and if there exists an integer k > 0 such that $A^k = 0$ then prove that there exists an invertible $m \times m$ matrix X such that XAX^{-1} is strictly upper triangular.

5. [4 points] Let A be a square matrix over \mathbb{C} such that $A^3 + 5A^2 + 2A - 3I = 0$. Prove that every eigenvalue λ of A satisfies $\lambda^3 + 5\lambda^2 + 2\lambda - 3 = 0$.

6. [30 points] In each of the following cases, give an example satisfying the given property. Give very brief justifications.

- (i) A 2×2 matrix over \mathbb{C} which is not normal.
- (ii) A symmetric 2×2 matrix whose associated symmetric bilinear form is neither positive semi-definite nor negative semi-definite.
- (iii) A 2 × 2 invertible matrix B over \mathbb{R} with all positive entries such that B cannot be written as $X^t X$ for any invertible matrix X.
- (iv) A matrix in $SO_3(\mathbb{R})$ which is not the identity matrix and whose eigenvalues are all real.

(v) The matrix of a reflection about a line through the origin in $\mathbb{R}^2.$